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Objectives

• In this lecture we will cover 

– An overview of pipelining 
– Benefits and problems of pipelining 
– Instruction Sets for pipelining 
– Implementing a pipelined datapath 

– (diagrams are from Patterson & Hennessy)
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The Laundry Analogy
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Points To Note
• The diagrams show machine usage over time 

– There is only one washing machine, used repeatedly 

• Pipelining does NOT speed up activities 
– It still takes 2 hours to launder clothes 

• Pipelining increases throughput 
– In a given time we can launder more clothes
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Stages in MIPS Instruction Execution
1. Fetch instruction from memory 

2. Read registers and decode instruction type 

3. Execute Operation or calculate address 

4. Access operand in data memory 

5. Write result to register
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Pipelining MIPS Instructions
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Points To Note
• Each step in the execution must be the same length 

of time 
– That of the longest step 

• In general, the longer the pipeline the greater the 
increase in speedup, but: 
– Each step needs to be “balanced”, (see above) 
– Pipelining (e.g. registers) imposes some overhead 
– (see also information on hazards later)
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Problems with pipelines
• We can only execute the next instruction 

overlapped with the current one if: 

– That concurrent instructions do not need the same 
hardware at the same time 

– We know what the next instruction will be 

– That all the data (operands) we require are available 

• A Hazard exists if any of these conditions not met
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Structural Hazards
• A structural hazard exists if the hardware cannot 

support the combination of instructions we wish to 
overlap 

– For example, if we need the ALU to calculate an address 
offset at the same time as another instruction needs it to 
add two registers 

• Structural hazards can be minimised by careful 
design of the instruction set
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MIPS Instruction Design
• The MIPS instruction set has been designed to aid 

pipelining by: 
– Having all instructions the same length 

▪ Helps balance pipeline stages 
– Simple (and consistent) instruction formats 

▪ Register addresses always in the same place (see next slide) 
▪ Can select registers at the same time as instruction decode 

– Cannot operate directly on memory operands 
▪Must load into registers first, store later 
▪ Execute stage calculates memory address, load or store later 

– Operands must be aligned on a 4 byte boundary 
▪ No need for double memory access to get 32 bits
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Register and Instruction Decode
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Control Hazards
• How do we handle jumps? 

– We do not know where to jump to until the instruction has 
been executed 

– The next instruction to execute is NOT sequential 

• How do we handle conditional branches? 
– The next instruction MAY BE sequential 
– It may be equivalent to a jump 
– We do not know until instruction completion 

• Two approaches – STALL and PREDICT
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Stall on Branch
• If we encounter a branch, insert a delay into the 

pipeline 
– i.e. suspend overlapping until we know the outcome 
– Also known as putting a “bubble” in the pipeline

Instruction 
fetch Reg ALU Data 

access Reg

Time

beq $1, $2, 40

add $4, $5, $6

lw $3, 300($0)

Instruction 
fetch Reg ALU Data 

access Reg
2 ns

Instruction 
fetch Reg ALU Data 

access Reg

 

2 ns

Program 
execution 
order 
(in instructions)

Instruction 
fetch Reg ALU Data 

access Reg

Time

beq $1, $2, 40

add $4, $5 ,$6

or $7, $8, $9

Instruction 
fetch Reg ALU Data 

access Reg

2 4 6 8 10 12 14

 2 4 6 8 10 12 14

Instruction 
fetch Reg ALU Data 

access Reg

2 ns

4 ns

bubble bubble bubble bubble bubble

Program 
execution 
order 
(in instructions)



Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 14

Predict Branch Outcome
• Assume we will always take branch 

– If we are correct we can carry on at full speed 
– If we are wrong we will have to discard some instructions 

▪ Known as “flushing” the pipelining 
– We must make sure we undo everything properly! 

• Alternatively assume we never take branch 

• Or try to predict branch outcome 
– Assume always take backwards jumps (bottom of loop) 
– Maintain history of recent jumps
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Data Hazards
• To execute an instruction we need all of the 

operands available 
– What if one operand is being calculated by the previous 

instruction? 

• Two possible approaches 
– Stall the pipeline until data becomes available 
– Use Forwarding, move data between pipeline stages 
– (more on this next week)
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Recall - Single Cycle Datapath
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A Pipelined Datapath
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Summary
• Pipelining is the process of overlapping instruction 

execution 
– Break instructions into smaller (balanced) steps 
– We need registers between each step + more control logic 

• Pipelining increases throughput, it does NOT 
reduce execution time 

• Pipeline Hazards exist where we cannot overlap 
instructions 
– Structural, control and data hazards
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Next Lecture

• Pipelines in action! 

• More detail on managing hazards 
– The MIPS branch delay slot 

• Applicability of pipelining techniques


