
Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 1

Lecture 8 –
Introduction to

Pipelining

Karl R. Wilcox
Karl@cs.rhul.ac.uk

Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 2

Objectives

• In this lecture we will cover

– An overview of pipelining
– Benefits and problems of pipelining
– Instruction Sets for pipelining
– Implementing a pipelined datapath

– (diagrams are from Patterson & Hennessy)

Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 3

The Laundry Analogy
Time

76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Time
76 PM 8 9 10 11 12 1 2 AM

A

B

C

D

Task
order

Task
order

Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 4

Points To Note
• The diagrams show machine usage over time

– There is only one washing machine, used repeatedly

• Pipelining does NOT speed up activities
– It still takes 2 hours to launder clothes

• Pipelining increases throughput
– In a given time we can launder more clothes

Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 5

Stages in MIPS Instruction Execution
1. Fetch instruction from memory

2. Read registers and decode instruction type

3. Execute Operation or calculate address

4. Access operand in data memory

5. Write result to register

Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 6

Pipelining MIPS Instructions

Instruction
fetch Reg ALU Data

access Reg

8 ns
Instruction

fetch Reg ALU Data
access Reg

8 ns
Instruction

fetch

 8 ns

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 4 6 8 10 12 14 16 18

2 4 6 8 10 12 14

...

Program
execution
order
(in instructions)

Instruction
fetch Reg ALU Data

access Reg

Time

lw $1, 100($0)

lw $2, 200($0)

lw $3, 300($0)

2 ns
Instruction

fetch Reg ALU Data
access Reg

2 ns
Instruction

fetch Reg ALU Data
access Reg

2 ns 2 ns 2 ns 2 ns 2 ns

Program
execution
order
(in instructions)

Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 7

Points To Note
• Each step in the execution must be the same length

of time
– That of the longest step

• In general, the longer the pipeline the greater the
increase in speedup, but:
– Each step needs to be “balanced”, (see above)
– Pipelining (e.g. registers) imposes some overhead
– (see also information on hazards later)

Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 8

Problems with pipelines
• We can only execute the next instruction

overlapped with the current one if:

– That concurrent instructions do not need the same
hardware at the same time

– We know what the next instruction will be

– That all the data (operands) we require are available

• A Hazard exists if any of these conditions not met

Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 9

Structural Hazards
• A structural hazard exists if the hardware cannot

support the combination of instructions we wish to
overlap

– For example, if we need the ALU to calculate an address
offset at the same time as another instruction needs it to
add two registers

• Structural hazards can be minimised by careful
design of the instruction set

Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 10

MIPS Instruction Design
• The MIPS instruction set has been designed to aid

pipelining by:
– Having all instructions the same length

▪ Helps balance pipeline stages
– Simple (and consistent) instruction formats

▪ Register addresses always in the same place (see next slide)
▪ Can select registers at the same time as instruction decode

– Cannot operate directly on memory operands
▪Must load into registers first, store later
▪ Execute stage calculates memory address, load or store later

– Operands must be aligned on a 4 byte boundary
▪ No need for double memory access to get 32 bits

Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 11

Register and Instruction Decode

PC

Instruction
memory

Read
address

Instruction
[31– 0]

Instruction [20 16]

Instruction [25 21]

Add

Instruction [5 0]

MemtoReg
ALUOp
MemWrite

RegWrite

MemRead
Branch
RegDst

ALUSrc

Instruction [31 26]

4

16 32Instruction [15 0]

0

0M
u
x

0

1

Control

Add ALU
result

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

PCSrc

Data
memory

Write
data

Read
data

M
u
x

1

Instruction [15 11]

ALU
control

Shift
left 2

ALU
Address

Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 12

Control Hazards
• How do we handle jumps?

– We do not know where to jump to until the instruction has
been executed

– The next instruction to execute is NOT sequential

• How do we handle conditional branches?
– The next instruction MAY BE sequential
– It may be equivalent to a jump
– We do not know until instruction completion

• Two approaches – STALL and PREDICT

Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 13

Stall on Branch
• If we encounter a branch, insert a delay into the

pipeline
– i.e. suspend overlapping until we know the outcome
– Also known as putting a “bubble” in the pipeline

Instruction
fetch Reg ALU Data

access Reg

Time

beq $1, $2, 40

add $4, $5, $6

lw $3, 300($0)

Instruction
fetch Reg ALU Data

access Reg
2 ns

Instruction
fetch Reg ALU Data

access Reg

2 ns

Program
execution
order
(in instructions)

Instruction
fetch Reg ALU Data

access Reg

Time

beq $1, $2, 40

add $4, $5 ,$6

or $7, $8, $9

Instruction
fetch Reg ALU Data

access Reg

2 4 6 8 10 12 14

 2 4 6 8 10 12 14

Instruction
fetch Reg ALU Data

access Reg

2 ns

4 ns

bubble bubble bubble bubble bubble

Program
execution
order
(in instructions)

Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 14

Predict Branch Outcome
• Assume we will always take branch

– If we are correct we can carry on at full speed
– If we are wrong we will have to discard some instructions

▪ Known as “flushing” the pipelining
– We must make sure we undo everything properly!

• Alternatively assume we never take branch

• Or try to predict branch outcome
– Assume always take backwards jumps (bottom of loop)
– Maintain history of recent jumps

Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 15

Data Hazards
• To execute an instruction we need all of the

operands available
– What if one operand is being calculated by the previous

instruction?

• Two possible approaches
– Stall the pipeline until data becomes available
– Use Forwarding, move data between pipeline stages
– (more on this next week)

Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 16

Recall - Single Cycle Datapath

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

Instruction

M
u
x

0

1

Add

PC

0Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
dataAddress

Data
memory

1

ALU
result

M
u
x

ALU
Zero

IF: Instruction fetch ID: Instruction decode/
register file read

EX: Execute/
address calculation

MEM: Memory access WB: Write back

Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 17

A Pipelined Datapath

Instruction
memory

Address

4

32

0

Add Add
result

Shift
left 2

In
st

ru
ct

io
n

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

PC

0
Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

ID/EX

Data
memory

Address

Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 18

Summary
• Pipelining is the process of overlapping instruction

execution
– Break instructions into smaller (balanced) steps
– We need registers between each step + more control logic

• Pipelining increases throughput, it does NOT
reduce execution time

• Pipeline Hazards exist where we cannot overlap
instructions
– Structural, control and data hazards

Computer Engineering II

Royal Holloway University of London
CS232 Lecture 8 19

Next Lecture

• Pipelines in action!

• More detail on managing hazards
– The MIPS branch delay slot

• Applicability of pipelining techniques

