

Lecture 6 – Processor Architecture Review

Karl R. Wilcox
Karl@cs.rhul.ac.uk

Administration

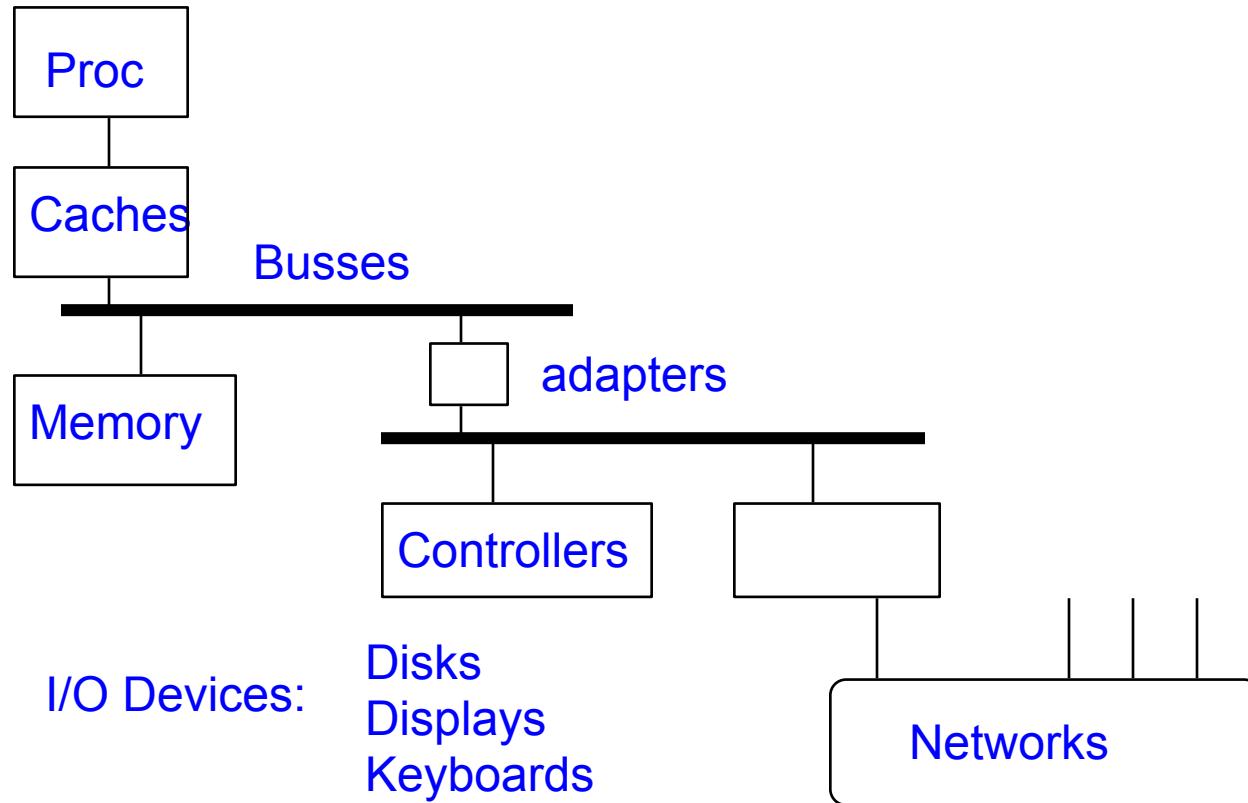
- **Lab Session to be arranged**
 - More information next Monday
- **Lecture Notes**
 - Are available at <http://www.cs.rhul.ac.uk/~karl>
 - Formats
 - Original Powerpoint 2000 slides
 - PDF files, A4 2 slides per page, colour
 - Let me know if you would like other formats

Objectives

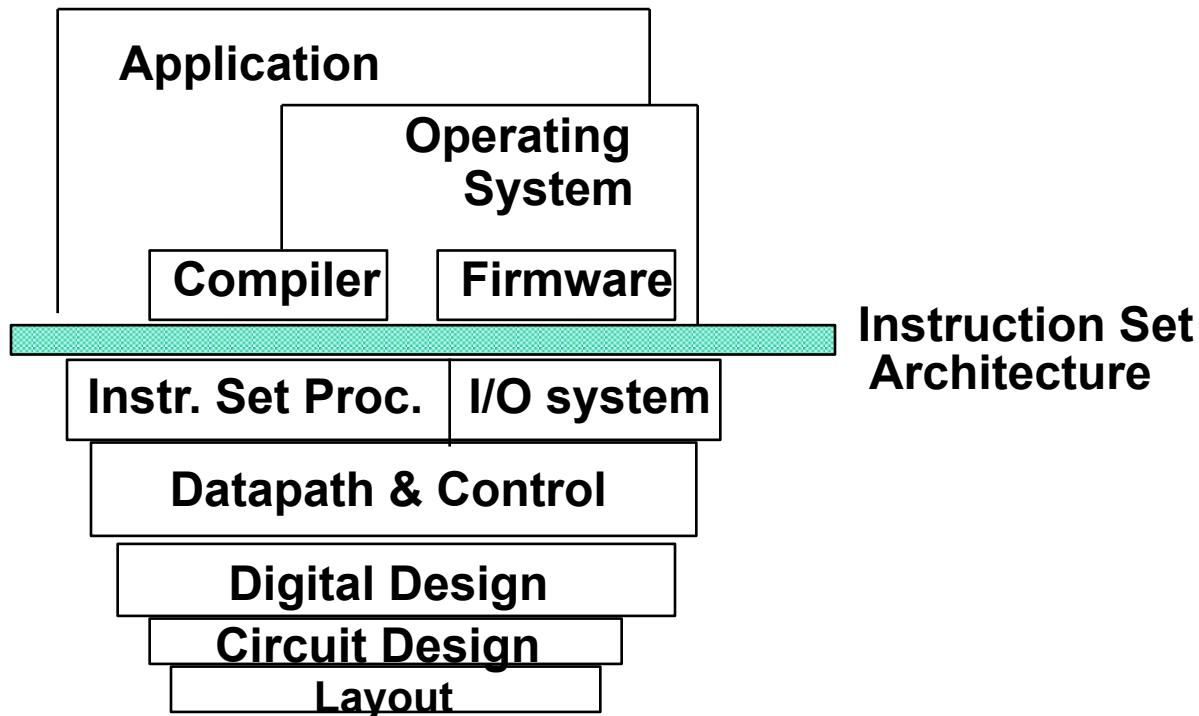
- **In this lecture we will discuss**
 - **Overview of this part of the course**
 - **Review of Processor Architecture**
 - **From Computer Engineering I**

Course Section Overview

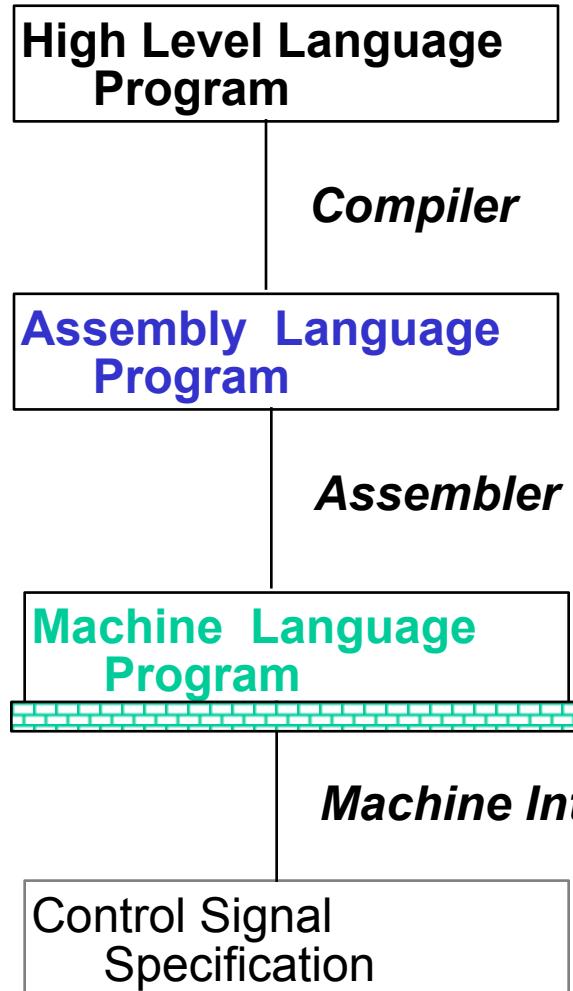
- In this section of the course we will cover processor design and systems architecture
 - Design of pipelined datapaths
 - caches
 - virtual memory systems
 - superscalar processors
 - Parallel Systems


The Course book

- **“Computer Organisation and Design – The Hardware / Software Interface” 2nd Edition**
 - David A. Patterson and John L. Hennessy
 - Morgan Kaufman
 - ISBN 1-55860-491-X
- Available from the library
- Also see <http://www.mkp.com/cod2e.htm>
- Not only covers all of the course material, but is an excellent and interesting book in its own right


Computer Organisation – Review 1

- All computers consist of five components
 - Processor: (1) datapath and (2) control
 - (3) Memory
 - (4) Input devices and (5) Output devices
- Not all “memory” is created equally
 - Cache: fast (expensive) memory are placed closer to the processor
 - Main memory: less expensive memory--we can have more
- Input and output (I/O) devices have the messiest organization
 - Wide range of speed: graphics vs. keyboard
 - Wide range of requirements: speed, standard, cost ...


Computer Organisation – Review 2

Levels of Abstraction

Levels of Representation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

lw \$15, 0(\$2)

lw \$16, 4(\$2)

sw \$16, 0(\$2)

sw \$15, 4(\$2)

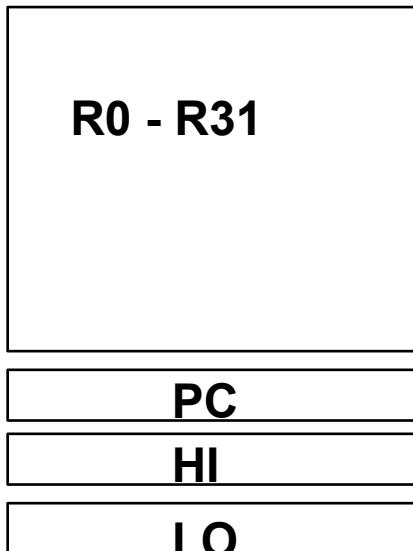
0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

ALUOP[0:3] <= InstReg[9:11] & MASK

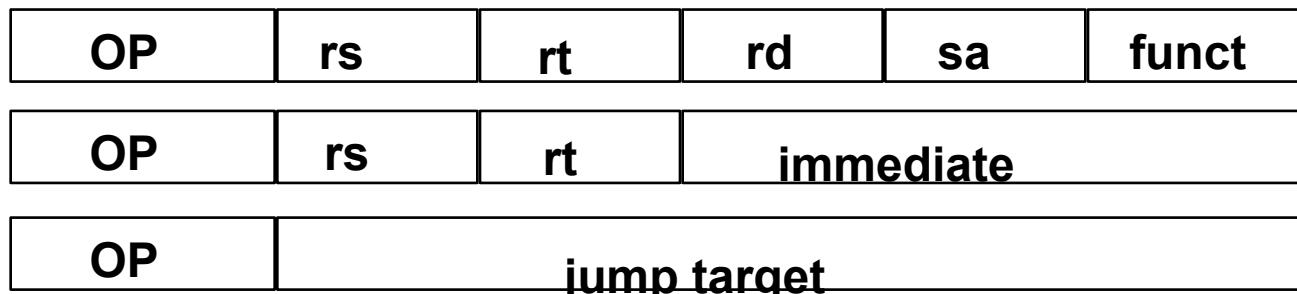
Royal Holloway University of London

The Instruction Set Architecture

- ° **Instruction Format or Encoding**
 - how is it decoded?
- ° **Location of operands and result**
 - where other than memory?
 - how many explicit operands?
 - how are memory operands located?
 - which can or cannot be in memory?
- ° **Data type and Size**
- ° **Operations**
 - what are supported
- ° **Successor instruction**
 - jumps, conditions, branches


Summary of the MIPS Processor

- **32-bit fixed format inst** (3 formats)
- **32 32-bit GPR** (R0 contains zero) and 32 FP registers (and HI LO)
 - partitioned by software convention
- **3-address, reg-reg arithmetic instr.**
- **Single address mode for load/store:** base+displacement
 - no indirection, scaled
- **16-bit immediate plus LUI**
- **Simple branch conditions**
 - compare against zero or two registers for =, \neq
 - no integer condition codes
- **Delayed branch**
 - execute instruction after the branch (or jump) even if the branch is taken (Compiler can fill a delayed branch with useful work about 50% of the time)


MIPS R3000 Instruction Set Architecture

- **Instruction Categories**
 - Load/Store
 - Computational
 - Jump and Branch
 - Floating Point
 - coprocessor
 - Memory Management
 - Special

Registers

3 Instruction Formats: all 32 bits wide

MIPS Register Conventions

0 zero constant 0

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

... (callee can clobber)

15 t7

16 s0 callee saves

... (caller can clobber)

23 s7

24 t8 temporary (cont'd)

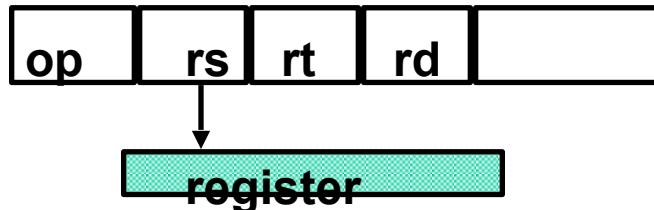
25 t9

26 k0 reserved for OS kernel

27 k1

28 gp Pointer to global area

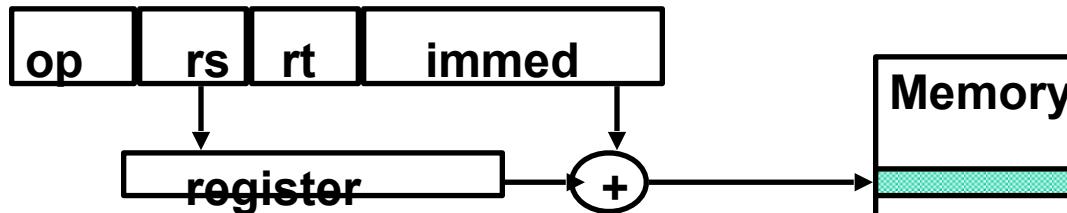
29 sp Stack pointer

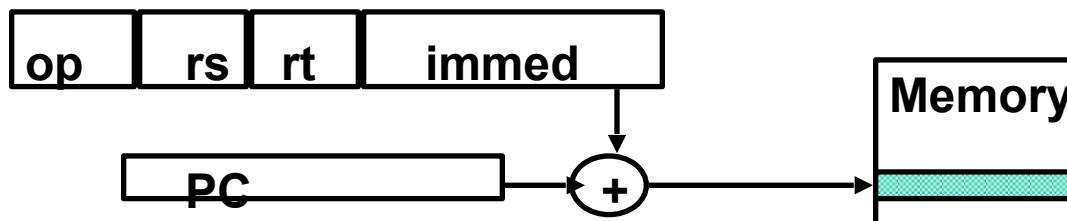

30 fp frame pointer

31 ra Return Address (HW)

MIPS Addressing Modes

- All instructions 32 bits wide


Register (direct)


Immediate

Base+index

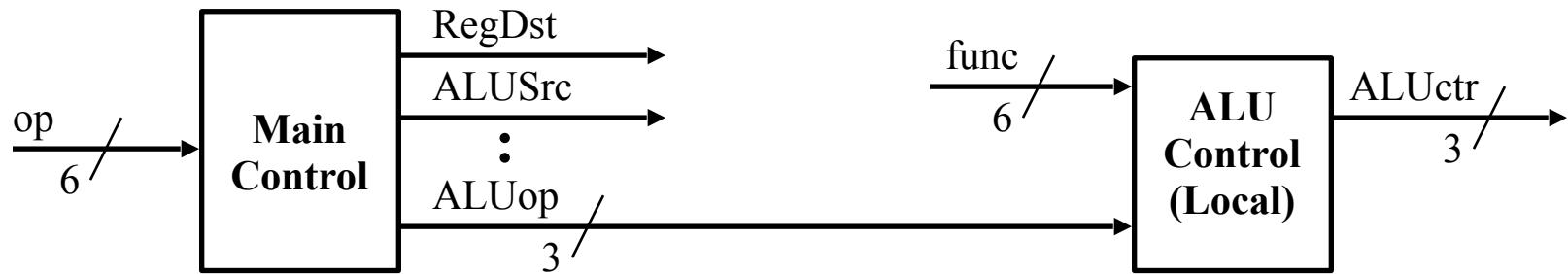
PC-relative

MIPS Arithmetic Operations

<i>Instruction</i>	<i>Example</i>	<i>Meaning</i>	<i>Comments</i>
add	add \$1,\$2,\$3	$\$1 = \$2 + \$3$	3 operands; exception possible
subtract	sub \$1,\$2,\$3	$\$1 = \$2 - \$3$	3 operands; exception possible
add immediate	addi \$1,\$2,100	$\$1 = \$2 + 100$	+ constant; exception possible
add unsigned	addu \$1,\$2,\$3	$\$1 = \$2 + \$3$	3 operands; no exceptions
subtract unsigned	subu \$1,\$2,\$3	$\$1 = \$2 - \$3$	3 operands; no exceptions
add imm. unsign.	addiu \$1,\$2,100	$\$1 = \$2 + 100$	+ constant; no exceptions
multiply	mult \$2,\$3	$Hi, Lo = \$2 \times \3	64-bit signed product
multiply unsigned	multu \$2,\$3	$Hi, Lo = \$2 \times \3	64-bit unsigned product
divide	div \$2,\$3	$Lo = \$2 \div \$3, Hi = \$2 \bmod \3	
divide unsigned	divu \$2,\$3	$Lo = \$2 \div \$3, Hi = \$2 \bmod \3	
Move from Hi	mfhi \$1	$\$1 = Hi$	Used to get copy of Hi
Move from Lo	mflo \$1	$\$1 = Lo$	Used to get copy of Lo

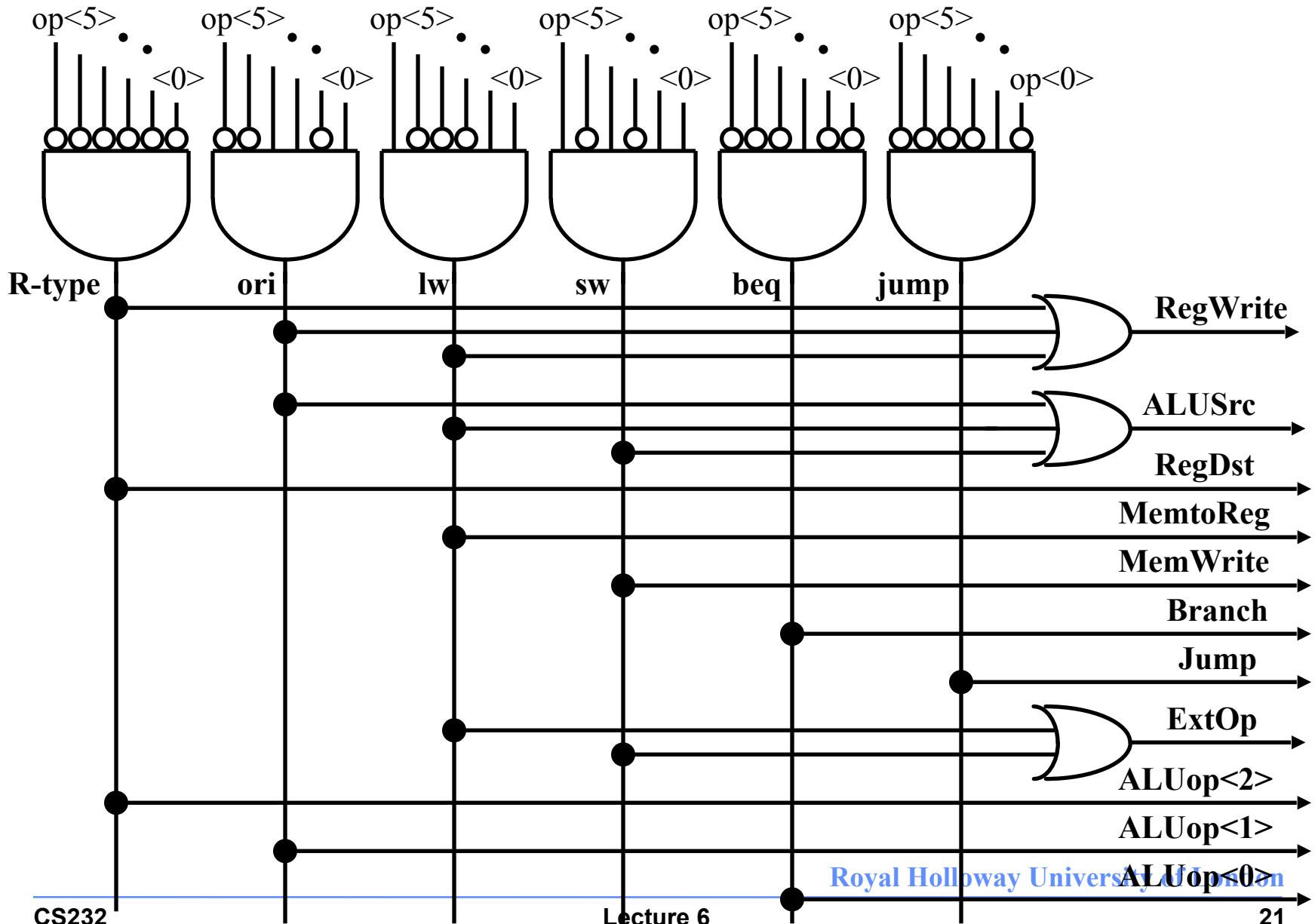
MIPS Logical Instructions

<i>Instruction</i>	<i>Example</i>	<i>Meaning</i>	<i>Comment</i>
and	and \$1,\$2,\$3	$\$1 = \$2 \ \& \ \$3$	3 reg. operands; Logical AND
or	or \$1,\$2,\$3	$\$1 = \$2 \mid \$3$	3 reg. operands; Logical OR
xor	xor \$1,\$2,\$3	$\$1 = \$2 \oplus \$3$	3 reg. operands; Logical XOR
nor	nor \$1,\$2,\$3	$\$1 = \sim(\$2 \mid \$3)$	3 reg. operands; Logical NOR
and immediate	andi \$1,\$2,10	$\$1 = \$2 \ \& \ 10$	Logical AND reg, constant
or immediate	ori \$1,\$2,10	$\$1 = \$2 \mid 10$	Logical OR reg, constant
xor immediate	xori \$1, \$2,10	$\$1 = \sim \$2 \ \& \ \sim 10$	Logical XOR reg, constant
shift left logical	sll \$1,\$2,10	$\$1 = \$2 \ll 10$	Shift left by constant
shift right logical	srl \$1,\$2,10	$\$1 = \$2 \gg 10$	Shift right by constant
shift right arithm.	sra \$1,\$2,10	$\$1 = \$2 \gg 10$	Shift right (sign extend)
shift left logical	sllv \$1,\$2,\$3	$\$1 = \$2 \ll \$3$	Shift left by variable
shift right logical	srlv \$1,\$2, \$3	$\$1 = \$2 \gg \$3$	Shift right by variable
shift right arithm.	srav \$1,\$2, \$3	$\$1 = \$2 \gg \$3$	Shift right arith. by variable


MIPS Comparison Instructions

<u>Instruction</u>	<u>Example</u>	<u>Meaning</u>
branch on equal	beq \$1,\$2,100	if (\$1 == \$2) go to PC+4+100 <i>Equal test; PC relative branch</i>
branch on not eq.	bne \$1,\$2,100	if (\$1!= \$2) go to PC+4+100 <i>Not equal test; PC relative</i>
set on less than	slt \$1,\$2,\$3	if (\$2 < \$3) \$1=1; else \$1=0 <i>Compare less than; 2's comp.</i>
set less than imm.	slti \$1,\$2,100	if (\$2 < 100) \$1=1; else \$1=0 <i>Compare < constant; 2's comp.</i>
set less than uns.	sltu \$1,\$2,\$3	if (\$2 < \$3) \$1=1; else \$1=0 <i>Compare less than; natural numbers</i>
set l. t. imm. uns.	sltiu \$1,\$2,100	if (\$2 < 100) \$1=1; else \$1=0 <i>Compare < constant; natural numbers</i>
jump	j 10000	go to 10000 <i>Jump to target address</i>
jump register	jr \$31	go to \$31 <i>For switch, procedure return</i>
jump and link	jal 10000	\$31 = PC + 4; go to 10000 <i>For procedure call</i>

Inside the MIPS Processor


Datapath Control Signals

- On the basis of the opcode (from the instruction) we need to generate appropriate control signals for each of the devices

Truth Table for Main Control

op	00 0000	00 1101	10 0011	10 1011	00 0100	00 0010
	R-type	ori	lw	sw	beq	jump
RegDst	1	0	0	x	x	x
ALUSrc	0	1	1	1	0	x
MemtoReg	0	0	1	x	x	x
RegWrite	1	1	1	0	0	0
MemWrite	0	0	0	1	0	0
Branch	0	0	0	0	1	0
Jump	0	0	0	0	0	1
ExtOp	x	0	1	1	x	x
ALUop (Symbolic)	“R-type”	Or	Add	Add	Subtract	xxx
ALUop <2>	1	0	0	0	0	x
ALUop <1>	0	1	0	0	0	x
ALUop <0>	0	0	0	0	1	x

Summary

- **Review Computer Architecture I !**
- **For this part of the course we are particularly interested in:**
 - Instruction Set Architecture
 - Datapaths
- **Recall – MIPS architecture and instruction set**
- **Datapath control signals generated by FSM, based on instruction op code**

Next Week

- **Further review of datapath**
- **Introduction to pipelining**
- **Next Lecture, Monday C103 CS**