L i.'m Electronics and
= |- Computer Science
TS

University of Southampton

CM214-COMP2008
Data Communications and Networks

Lossless Data Compression

Karl R. Wilcox
Krw@ecs.soton.ac.uk

CM214-COMP2008 Unit7 Slide 1



iy

'Eu Obijectives

TS

 To understand data compression
— How it works
— Its role in networks and communications
— When to use it
—When not to use it

» (Peterson & Davie, Section 7.2)

CM214-COMP2008 Unit7 Slide 2



iy

ToF

Compression
IRETTTTS

+ COMPRESSION

— Process of encoding data so it is smaller (in time
and/or space) than original data.

« WHY COMPRESS?

— To reduce bandwidth consumption (time / space /
cost) on a network

— To reduce the long-term storage space (archiving)

* Requirements may have different
characteristics:

— speed of encoding important for networks
— compression ratio more important for archiving.

CM214-COMP2008 Unit7 Slide 3



iy

-Eu Lossless Vs Lossy
IRETTTTS

 Some encodings preserve all the
original data

— "lossless”
— e.g. Huffman
« others may discard (hopefully
insignificant) information
— "lossy"
— e.g. JPEG

CM214-COMP2008 Unit7 Slide 4



gy
n 2

TS

Why Not Compress? - A

1. If the “cost” of compression does not
exceed the benefits, e.qg.

 Small items do not compress well
(fixed overheads of compression)

Examples: TELNET, SSH

* No net gain in network transmission time
(See next slide)

CM214-COMP2008 Unit7 Slide 5



gy
n 2

TS

Cost Vs Benefit

A network with bandwidth B_ bits/sec can transmit x bits
in x/B_

If data (de)compressed at rate of B, bits/sec with
compression ratio r:1 then time to transmit is total of:

Time to compress x bits x/B,
Time to transmit bits x/(rB.)
Time to decompress x/B,

To be worthwhile total must be less than time to transmit
uncompressed data

ZX/Bc + X/(I‘Bn) < X/Bn
@G@GWSSiOn rate Bc muwst’be > (ZBn) /(1 -1/r) Slide 6



gy
n 2

TS

Why Not Compress? — B

1. Already compressed data

« Cannot be compressed again by same
method

2. Random data cannot be compressed
* |.e. equal probability of occurrence

 Compression takes advantage of
redundancy / duplication in data

* “uncompressible” is one definition of
‘random’!

CM214-COMP2008 Unit7 Slide 7



gy
n 2

TS

Why Not Compress? — C

1. Compressed data less tolerant of
errors

— Single bit error corrupts entire zip archive
— Compare to single bit error in ASCII text
2. Lossy compression may lose
Important data
 E.g. watermarks in images
« Steganographic data

CM214-COMP2008 Unit7 Slide 8



gy
n 2

TS

Why Not Compress? — D

1. May be more susceptible to attack

* Recent case of malicious zip file e-mail
attachment

* Mail server virus scanner would
uncompress zip file to find it contains a
1Mb zip file
« This zip uncompressed, to find it contains a

1Mb zip file

This zip uncompressed, to find it contains a 1Mb
zip file......

CM214-COMP2008 Unit7 Slide 9



iy

ToF

Huffman Encoding
T

“Optimal for discrete memoryless
sources”

— i.e. good for human texts!

* Relies on “symbols” (letters) having
different probabilities of occurrence
— Constructs binary tree
— High probability near top of tree (few bits)
— Low probability near bottom (more bits)

CM214-COMP2008 Unit7 Slide 10



IHJJ

_nu

TS

Huffman Algorithm

1. Order symbols into decreasing
probability of occurrence

X, X,, ...X, } probabilties {P,, P,, ...P_}

2. Combine last two elements to single
element with prob. P’ =P _  +P_

3. Append 0 & 1 to last digits of code
words for X _, & X_

Easier fo understand on diagram!

Slide 11



TS

iy

ToF

Huffman Example

0,33

]

x1

0.30

0.65

x2

0.20

X3

0.10

X4

0.04

X5

0.005
X6

0

0.01

0.05

0.13

0.35

0.005

= 1
X7 CM214-COMP2008

1

Unit7

Sym.

1

[\®]

W

N

SN I ale

~

//O
110
111

Slide 12



gy
n 2

Huffman Considerations &
;J!“I ]

» Loses the byte boundary

— Data becomes a pure bit stream

— Need to mark end of data (cannot O pad)
 Static dictionary

— E.g. English letter frequencies

— Do not need to send dictionary
* Dynamic dictionary

— Calculation & sending involves overhead

CM214-COMP2008 Unit7 Slide 13



iy

ToF

=k Lempel-Ziv Encoding

 Dictionary based, but works on arbitrary
bit streams
— Efficiency increases with longer bitstreams
— Can rebuild dictionary if it becomes
inefficient
— Used in GIF, ZIP & many others
— Loses byte boundary again

CM214-COMP2008 Unit7 Slide 14



iy

ToF

=k Lempel-Ziv Encoding

1. Start with an empty dictionary

2. Match the input stream with phrases
In the dictionary

3. Create new phrase from old +
different end symbol

4. Add phrase to dictionary

5. Encoded output is dictionary position
+ new letter

CM214-COMP2008 Unit7 Slide 15



T

-QU

TS

Lempel-Ziv Example

Dictionary | Dictionhary | Code

* Input stream | Location | Contents | Word
0 | 0000

shown below 1 | 0001 1 00001

o 2 | 0010 0 Q0000

— Commas indicate 3 | oo11 10 00010

4 | 0100 11 00011

phrase 5 | 0101 01 Q0101

: 6 | 0110 00 Q0100

boundaries 7 | o111 100 00110

- 8 | 1000 111 01001

— Not part of input 9 | 1001 010 01010

10 | 1010 1000 01110

11 | 1011 011 01011

12 | 1100 001 01101

1,0,10,11,01,00,100, 13 | 1101 110 01000

111,010,1000,011, 14 | 1110 101 00111

001,110,101,10001, 15 | 1111 10001 10101

1011 16 1011 11101

CM214-COMP2008 Unit7 Slide 16



gy
n 2

Lemep-Ziv Features
T

* Do not need to send dictionary

— Can be built from input stream

— (For a given size of dictionary)

— Can rebuild dictionary if performance falls
— But need "marker” and “bit stuffing”

« Example actually makes “compressed”
version longer

— On longer bitstreams very efficient

CM214-COMP2008 Unit7 Slide 17



gy
n 2

TS

Other Techniques

* Run Length Encoding
— How many ‘1's, how many ‘0O’s
— Used in Fax transmission

» Delta Encoding

— Difference between current “word” &
previous

* Many others + variants of above

CM214-COMP2008 Unit7 Slide 18



g | |
Ef- Compression Comparisons &
TS

* No single answer for lossless
compression

— Depends on application & data
« Comparisons (on Unix systems)
— compress (Lempel-Ziv)
- pack (Huffman, single dictionary)
— compact (adaptive Huffman)

CM214-COMP2008 Unit7 Slide 19



iy

ToF

Summary
T

* Lossless compression can reduce
network bandwidth usage

— Sometimes used at packet level in
networking (e.g. PPP over slow links)

— But there Is a processing overhead
— Which may make compression impractical

« Compression is not always appropriate!

CM214-COMP2008 Unit7 Slide 20



