
CM214-COMP2008 Unit 7 Slide 1

Lossless Data Compression

Karl R. Wilcox
krw@ecs.soton.ac.uk

CM214-COMP2008
Data Communications and Networks

CM214-COMP2008 Unit 7 Slide 2

Objectives

• To understand data compression
– How it works
– Its role in networks and communications
– When to use it
– When not to use it

• (Peterson & Davie, Section 7.2)

CM214-COMP2008 Unit 7 Slide 3

Compression

• COMPRESSION
– Process of encoding data so it is smaller (in time

and/or space) than original data.
• WHY COMPRESS?

– To reduce bandwidth consumption (time / space /
cost) on a network

– To reduce the long-term storage space (archiving)
• Requirements may have different

characteristics:
– speed of encoding important for networks
– compression ratio more important for archiving.

CM214-COMP2008 Unit 7 Slide 4

Lossless Vs Lossy

• Some encodings preserve all the
original data
– "lossless"
– e.g. Huffman

• others may discard (hopefully
insignificant) information
– "lossy"
– e.g. JPEG

CM214-COMP2008 Unit 7 Slide 5

Why Not Compress? - A

1. If the “cost” of compression does not
exceed the benefits, e.g.

• Small items do not compress well
(fixed overheads of compression)
• Examples: TELNET, SSH

• No net gain in network transmission time
(See next slide)

CM214-COMP2008 Unit 7 Slide 6

Cost Vs Benefit

A network with bandwidth Bn bits/sec can transmit x bits
in x/Bn

If data (de)compressed at rate of Bc bits/sec with
compression ratio r:1 then time to transmit is total of:
Time to compress x bits x/Bc

Time to transmit bits x/(rBn)
Time to decompress x/Bc

To be worthwhile total must be less than time to transmit
uncompressed data

2x/Bc + x/(rBn) < x/Bn

So compression rate Bc must be > (2Bn) / (1 – 1/r)

CM214-COMP2008 Unit 7 Slide 7

Why Not Compress? – B

1. Already compressed data
• Cannot be compressed again by same

method
2. Random data cannot be compressed

• i.e. equal probability of occurrence
• Compression takes advantage of

redundancy / duplication in data
• “uncompressible” is one definition of

“random”!

CM214-COMP2008 Unit 7 Slide 8

Why Not Compress? – C

1. Compressed data less tolerant of
errors

– Single bit error corrupts entire zip archive
– Compare to single bit error in ASCII text

2. Lossy compression may lose
important data

• E.g. watermarks in images
• Steganographic data

CM214-COMP2008 Unit 7 Slide 9

Why Not Compress? – D

1. May be more susceptible to attack
• Recent case of malicious zip file e-mail

attachment
• Mail server virus scanner would

uncompress zip file to find it contains a
1Mb zip file
• This zip uncompressed, to find it contains a

1Mb zip file
• This zip uncompressed, to find it contains a 1Mb

zip file……

CM214-COMP2008 Unit 7 Slide 10

Huffman Encoding

• “Optimal for discrete memoryless
sources”
– i.e. good for human texts!

• Relies on “symbols” (letters) having
different probabilities of occurrence
– Constructs binary tree
– High probability near top of tree (few bits)
– Low probability near bottom (more bits)

CM214-COMP2008 Unit 7 Slide 11

Huffman Algorithm

1. Order symbols into decreasing
probability of occurrence
• {X1, X2, …Xn} probabilities {P1, P2, …Pn}

2. Combine last two elements to single
element with prob. P’n-1 = Pn-1 + Pn

3. Append 0 & 1 to last digits of code
words for Xn-1 & Xn

Easier to understand on diagram!

CM214-COMP2008 Unit 7 Slide 12

Huffman Example

111110.005X7

111100.005X6

11100.04X5

1100.15X4

100.20X3

010.30X2

000.35X1

Enc.Prob.Sym.

CM214-COMP2008 Unit 7 Slide 13

Huffman Considerations

• Loses the byte boundary
– Data becomes a pure bit stream
– Need to mark end of data (cannot 0 pad)

• Static dictionary
– E.g. English letter frequencies
– Do not need to send dictionary

• Dynamic dictionary
– Calculation & sending involves overhead

CM214-COMP2008 Unit 7 Slide 14

Lempel-Ziv Encoding

• Dictionary based, but works on arbitrary
bit streams
– Efficiency increases with longer bitstreams
– Can rebuild dictionary if it becomes

inefficient
– Used in GIF, ZIP & many others
– Loses byte boundary again

CM214-COMP2008 Unit 7 Slide 15

Lempel-Ziv Encoding

1. Start with an empty dictionary
2. Match the input stream with phrases

in the dictionary
3. Create new phrase from old +

different end symbol
4. Add phrase to dictionary
5. Encoded output is dictionary position

+ new letter

CM214-COMP2008 Unit 7 Slide 16

Lempel-Ziv Example

• Input stream
shown below
– Commas indicate

phrase
boundaries

– Not part of input

CM214-COMP2008 Unit 7 Slide 17

Lemep-Ziv Features

• Do not need to send dictionary
– Can be built from input stream
– (For a given size of dictionary)
– Can rebuild dictionary if performance falls
– But need “marker” and “bit stuffing”

• Example actually makes “compressed”
version longer
– On longer bitstreams very efficient

CM214-COMP2008 Unit 7 Slide 18

Other Techniques

• Run Length Encoding
– How many ‘1’s, how many ‘0’s
– Used in Fax transmission

• Delta Encoding
– Difference between current “word” &

previous
• Many others + variants of above

CM214-COMP2008 Unit 7 Slide 19

Compression Comparisons

• No single answer for lossless
compression
– Depends on application & data

• Comparisons (on Unix systems)
– compress (Lempel-Ziv)
– pack (Huffman, single dictionary)
– compact (adaptive Huffman)

CM214-COMP2008 Unit 7 Slide 20

Summary

• Lossless compression can reduce
network bandwidth usage
– Sometimes used at packet level in

networking (e.g. PPP over slow links)
– But there is a processing overhead
– Which may make compression impractical

• Compression is not always appropriate!

