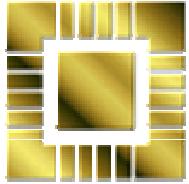
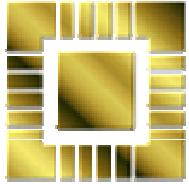


**CM214-COMP2008
Data Communications and Networks**

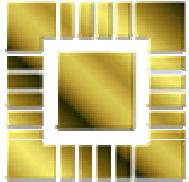
Networking Requirements


Karl R. Wilcox
krw@ecs.soton.ac.uk

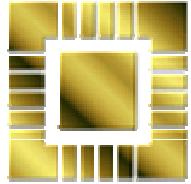
Objectives


- To review basic networking technology
- To understand what is required to move data over a significant distance
 - I.e. more than a few metres
- (Peterson & Davie, Sections 1 & 2)

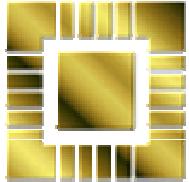
Data Transmission


- At the most fundamental level of the network, we need a means of transmitting a signal
 - A varying electrical voltage
 - In a wire
 - A varying electro-magnetic field
 - In open air / space
 - Confined in a medium (e.g. co-axial cable)
 - (In theory – anything else)

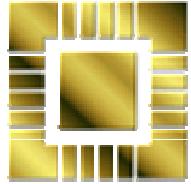
Data Encoding


- We also need a “mapping” between the varying signal and the (digital) data
 - This is the encoding
- Types of encoding (signal → binary digits)
 - NRZ, NRZI, Manchester, 4B/5B
 - There is more than one way!
 - (Almost) always implemented in hardware

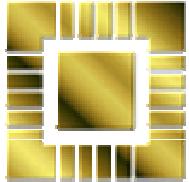
Data Framing


- The stream of bits must be split into meaningful units (frames)
- Need to indicate start (synchronisation)
- Sentinel approach
 - Use special bit sequences as markers
 - Need to “escape” markers in data
- Byte counting approach
- Clock based framing
 - Regularly repeated markers, no “escapes”

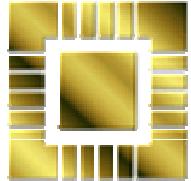
Data Errors


- Errors occur in data transmission due to
 - Thermal noise
 - No electrical system is perfect
 - Interference
 - Other sources of electro-magnetic radiation
 - Cosmic rays
 - Can affect buffers, memories
 - Other factors
 - JCB Operators, mice, cups of coffee...

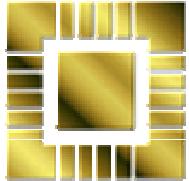
Error Detection


- There are techniques to detect errors
 - For a given probability of errors occurring we can ensure correct transmission with any level of confidence we require (but not 100%)
 - At the cost of “overhead” bits
- Examples
 - 2D Parity, Checksums, CRCs

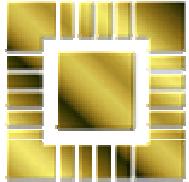
Error Correction


- With further overhead bits we can also correct (certain combinations of) errors
 - Hamming codes
- The overhead is quite high – error correction only worthwhile if the cost of retransmission is very high (or impossible)
 - E.g. Forward Error Correction (FEC) on satellite TV transmissions

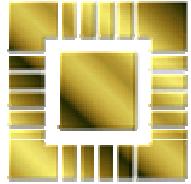
Lost Frames


- Most links are not error corrected
- Detected errors cause the frame to be discarded
- Frames may also get lost in transit
- Acknowledgements and timeouts can be used to cause lost / corrupt frames to be resent
 - Automatic Repeat Request (ARQ)

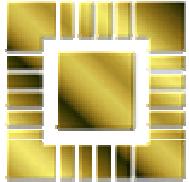
ARQ Algorithms


- Stop and Wait
 - 1 frame outstanding at any time
 - Needs 1 bit flag to detect duplicate frames
- Sliding Window
 - More than 1 frame outstanding
 - Various schemes for acknowledgement
 - Can also manage out of order frames

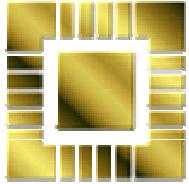
Terminology – 1


- Link – point to point connection between two nodes of a network
 - e.g. cable, leased line, optical fibre
- Node – some processing element on the network
 - e.g. general purpose computer, or network router

Terminology – 2


- Bandwidth – number of bits per second that can be sent over a link
 - e.g. Ethernet 10Mbps
- Throughput – the measured performance of a link
 - Typical Ethernet shared segment 3Mbps

Terminology – 3


- Latency – The time taken by a packet to traverse a link
 - This is **not** the inverse of the bandwidth / bitrate
 - It depends on the propagation time of the medium
 - And any processing delays in the link
- Round Trip Time (RTT) – Time to send a packet there and back again

Terminology – 4

- Propagation delay – The time for one bit to traverse a link
- Delay x bandwidth – The “capacity” of a link, i.e. the outstanding data in the link
 - This is important for flow control
 - And for the efficient usage of the link

Terminology – 5

- Bitrate – rate at which digital bits are transmitted
- Baudrate – rate at which the signal varies
 - Although it is considered somewhat “nerdy” to point out this distinction...

Summary

- Networks consist of links and nodes
- We need to encode the digital data in some varying signal
- And group raw “bits” into frames
- And try to detect any errors in the frame
- While still using the link most efficiently
- And not confusing our terminology